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Passage of relativistic electrons through a plasma 

J. RAE 
Department of h-atural Philosophy, University of Glasgow 
MS.  received 28th iVovember 1967 

Abstract. A general expression, in terms of thermodynamic Green functions, for 
the electron-electron direct scattering rate within a hot plasma is evaluated in the 
case where one of the electrons is relativistic. The result is used to calculate the rate 
of energy loss of a relativistic electron to a plasma in a wide, but specified, range of 
temperature and density. 

1. Introduction 
Scattering and stopping of charged particles passing through a plasma can be treated 

by expressing the scattering rate for the process in terms of a two-particle thermodynamic 
Green function. The  non-relativistic case has been examined in some detail by Larkin 
(1960). The formalism and method are more generally applicable and are used here to calcu- 
late the rate of energy loss of a relativistic electron to a hot plasma. 

2. The scattering rate 
If a fast electron has a momentum greater than the average thermal momentum of the 

plasma electrons, its main energy loss process is the direct term of the electron-electron 
scattering amplitude, represented by the diagram (figure 1). 

P = P - 9  Y f f . 4  

Figure 1. Electron-electron direct scatter. 

The  squared amplitude can be expressed (Alekseev 1961) in terms of a two-particle 
thermodynamic Green function with identical pairs of arguments, which can, in turn, 
be written as a function of the polarization operator for the plasma system. Thus the transi- 
tion probability for energy-momentum loss k = (U, q) is obtained as 

6 - t o +  
where e2 is the fine structure constant, p-’ = k,T, T is the plasma temperature, m the 
electron mass and h = c = 1. 

The tensor Tu,  is given by 

1 

With errors of magnitude e2 and e4P3p, where p is the plasma density, the polarization 
operator I1 can be approximated by its zero-order term 

e2 
rI , , (k)  = -- 2 J dt Tr{y,,GO(t)YvGO(t + 4) ( 3 )  ( ~ V ) ~ P  n =  - m 
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where Go is the free-electron Green function: 

Go(p)  = (Z&+WZ)-’ p4 = ( Z n + l ) ~ p - ’ + i p  

p being the chemical potential of the system. In  terms of the above quantities the fast 
electron’s rate of energy loss is simply 

dE -=j dt { 4 P >  - 4 P  - ~ ) W ( k )  4. (4) 

Using the tensor and gauge properties of Il (Akhiezer and Peletminskii 1960), we can 
express 

l - ( q 2 - w 2 ) - 1 r I A A  

in the coordinate system defined by k = ( w ,  q, 0,O) and p ,  = 0, in the form 

___- 0 0 io h w2 la - -  
q2 l-(q2--2)q-2h ~ q l-(q2-w2)q-2h 

where 

and 

__ J o  
1 -f 

f 
1 -f 

0 -  

0 

0 

- e2 
H V ,  = - i d t -  

277 E 

n ( ~ )  (q2 - w2 - 2t . q)(2m2 - 2t . q) - 4 2 0 2  
(42 - 0 2  - 2t * q ) 2  - 4 2 w 2  

Finally, from their method of construction, the components of (5), as functions of com- 
plex w ,  are analytic in the upper half-plane (Alekseev 1961). 

I n  the same coordinate system as used above we can write (2), for electrons with 
/pi  9 m and = p . q / / p /  = qx, 

r iw  1 

0 

where the unspecified entries do not contribute on account of the form of ( 5 ) .  
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I n  proceeding with the calculation of dEjdt it is convenient to split the q integral into 
two ranges q > s, q < s, where s is at present unspecified, and to separate the transverse 
and longitudinal contributions, that is the 2,2; 3,3 entries of ( 5 )  and the others, respectively. 

3. Low q longitudinal part 
In  this case, from (1) and (4), 

(8) 
dE e2 s d q 4  4 w 

dt = G/,,y {/-qdol-exp(-/30) q2- (q2-w2)h  

In  this, the maximum value of w is q, so that i f s  is chosen equal to /3-' the integrand of (8) 
is analytic in the upper half w plane. The integral over o from - q to q along the real axis 
is now equal to the integral taken round the upper semicircle centred on the origin and of 
radius q. On this arc we can approximate h, to terms in (/3m)-,, by 

h=-- /dt- .(E) (t . q ) 2  + 2q2 
473 q2 - U 2  E (t . q)2--62w2 

where K ,  is a first-order modified Bessel function of the second kind (Watson 1958). 
The  imaginary part of the integral in (8) is given by half of the sum of the residues 

of such poles of the integrand as lie on the real axis between - q and + q. These poles lie 
at w = +A,  so that the imaginary part of the inner integral in (8) has the values 

$nA2 if q > A 

e z 2 s , 7  e2A2 
We thus have 

_ -  -- --=-- 
4T 

Expanding to order (/3m)-l, we have 

so that to this order 

where 

dE e2A2 
dt 4n 
_ -  - -- log (i) (9) 

4. High q longitudinal par t  

can be shown to be less than e2/3p. Thus in this upper range of q it holds that 
The  function I IB4(w,  q) is always of the order of, or less than, II,,(O, 0), which from (6) 

q2 > s2 = 9 e2/3p > 1144(0) > IT,,(k) 
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if the plasma temperature and density are such that 

e2P3p < 1. (10) 
It is now possible to neglect (q2- w2)q-% compared with 1 in the denominators in ( 5 ) .  
This  gives 

where h is as defined by (6). If the integrand of (6) is considered as a function of complex t ,  
the imaginary part of h arises from the poles of this integrand. T o  terms of order (/3m)-l 
it has the value 

with 
U = [ { iq  + xm( 1 - x2) - + m2I1l2 

giving in (1 1) 

A change of variable to v = x(1- x ~ ) - ' ' ~  brings the inner integral to 

This is evaluated approximately by substituting, in the factor multiplying the exponential, 
the value v = -q/2m at which the exponential is minimal, and then performing the inte- 
gration over the exponential alone. T o  order (/3m>-l, (14) is 

- 2n2Ppq 
m(4m2 + q2)'I2 (1- &I* 

The  remaining integration in (13) is simply done to give, using the fact that s = /3-l < m, 

- dE = - e4p (1 - 2pm) 3 log (F) 
dt 4rm 

5. Transverse part 
So far we have considered only the longitudinal losses and have neglected the 2,2; 3,3 

components of ( 5 ) .  These transverse parts are negligible in the cases considered by Larkin 
(1960), but here provide a significant further energy loss. If the q integration is split into 
two ranges as before, it is found that the poles in the low q region always lie outside the 
range of integration and so give no contribution to the imaginary part. This means that the 
transverse part is not screened out in the manner of the longitudinal part. It follows that, 
analogous to (ll),  the total transverse loss is given by 

w -1 dE e2 1 

dt 4r2  - 1  1 - exp( - P w )  q2 
- = --- 1: q2 dq 1 dx - 9f. 

The imaginary part o f f  is evaluated just as 9% in (12), but with the appropriate linear 
combination (7) of IIvv and II,, in place of IT,, alone. The  result, to terms in (Pm)-', is 
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giving for (16) 

The integral is evaluated just as in (14) to yield 

dE e4p 
dt 8 m  
_ -  

6. Conclusions 
The most basic approximation used in the preceding sections is that TI can be approxi- 

mated by its zero-order term (3), an assumption that is valid if e4P3p is small. The  assump- 
tion of a Maxwell distribution is valid if J&h-,8/m)3i2p is small. In  the calculation it was 
assumed for (10) that e2P3p < 1 and throughout that (/3m)-l < 1 and p / m  B 1. Thus, for 
a relativistic electron ( >  10 MeV) passing through a plasma whose temperature T (OK) and 
density p (cm-3) satisfy 

T < lo9, p < loz4, P T - ~  < lo3 

the total rate of energy loss to order (/ lm)-l ,  given by (9),  (15) and (17), is 

Acknowledgments 

Research Council for financial assistance. 
I wish to thank Dr. E. W. Laing for helpful criticism and advice, and the Science 

References 
AKHIEZER, I. A., and PELETMINSKII, S .  V., 1960, Sov. Phys.-JETP, 11, 1316-22. 
ALEKSEEV, A. I., 1961, Sow. Phys.-Usp., 4, 23-50. 
LARKIN, A. I., 1960, Sou. Phys.-JETP, 10, 186-91. 
WATSON, G. N., 1958, Theory of Bessel Functions (London: Cambridge University Press). 


